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ABSTRACT 
The low Mach number approximation of the Navier-Stokes equations is of similar nature to the equations 
for incompressible flow. A major difference, however, is the appearance of a space- and time-varying density 
that introduces a supplementary non-linearity. In order to solve these equations with spectral space 
discretization, an iterative solution method has been constructed and successfully applied in former work 
to two-dimensional natural convection and isobaric combustion with one direction of periodicity. For the 
extension to other geometries efficiency is an important point, and it is therefore desirable to devise a 
direct method which would have, in the best case, the same stability properties as the iterative method. 
The present paper discusses in a systematic way different approaches to this aim. It turns out that direct 
methods avoiding the diffusive time step limit are possible, indeed. Although we focus for discussion and 
numerical investigation on natural convection flows, the results carry over for other problems such as 
variable viscosity flows, isobaric combustion, or non-homogeneous flows. 
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INTRODUCTION 

Spectral paradise is the constant coefficient heat equation with periodic boundaries: the 
development of the unknown in a Fourier series leads to a set of ordinary differential equations 
in time, one for each mode, of which the solution is straightforward. In real life, however, several 
kinds of modifications introduce difficulties. The first is due to the boundary conditions that 
are rarely periodic and may even concern complex geometry. A second one (among others) 
arises from the presence of non-linearities in the equations which would prevent in the above 
example the uncoupling of different modes; non-linear operators are of course more difficult to 
handle than linear ones. In the present paper we shall focus on this aspect and discuss its 
consequences for the numerical solution of the equations governing low Mach number flows in 
two-dimensional geometry with one direction of periodicity. 

Let us first recall some general features of current spectral methods in fluid dynamics1. One 
point is that, although based on spectral space discretization, these methods generally employ 
a time scheme of finite difference type. This is due to several reasons among which involved 
programming for spectral time-discretization plays the key role2,3. Explicit time discretization 
of the different terms may lead to corresponding limitations of the time step. These are restrictive 
in particular for terms that contain higher order derivatives. Due to the eigenvalues of the 
discrete differentiation operator the critical time step generated by a term of pth order derivative 
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behaves, as a rule of thumb, like: 

Fourier series, 

Chebychev series, 

where N is the degree of approximation and xi the related collocation points1. The general 
strategy now is to apply implicit discretization to the most restrictive terms and to treat the 
remainder by an explicit scheme. 

Let us note for illustration and comparison the non-dimensional equations of motion for a 
fluid with constant density and viscosity that read in primitive variables: 

where v = (u, v)t is the velocity, p the pressure, and Re the Reynolds number. A time scheme 
having become widely adopted for spectral methods that follows the above remarks is the 
three-level second order Euler-backward/Adams-Bashforth scheme4. It reads for the above 
equations: 

and has proven good stability properties in many cases. For small values of Re the scheme is 
unconditionally stable, contrarily to the Crank-Nicolson/Adams-Bashforth scheme5. When 
starting up a calculation, the scheme (5) is at the first time step replaced by a similar but two-level 
first order scheme. Observe that the diffusive term on the implicit side in (5) only contains linear 
operators with constant coefficients. This is favourable for the application of efficient techniques 
usually associated with spectral approximation like Tau method, influence matrix technique, 
and diagonalization. On the contrary, the non-linear convective term is treated explicitly, and 
we use the notation: 

for the second order Adams-Bashforth extrapolation. 
The particularity of the Navier-Stokes equations for incompressible fluids is the fact that the 

non-linearity is confined to the convective terms which contain first order spatial derivatives 
only, whereas the diffusion term is linear. The situation is no longer as simple as this if the 
diffusion term is non-linear as e.g. for a variable viscosity considered by Malik et al.6. This is 
similar when one considers the full Navier-Stokes equations for compressible fluids7,8, or the 
low Mach number equations as in the present study. The difficulty arises from the fact that the 
derivatives in time and the highest order derivatives (diffusive terms) do not carry on the same 
variable (e.g. ρv and v for the conservative form of the momentum equation). In this case, 
following the general procedure suggested by Gottlieb and Orszag2, a semi-implicit scheme may 
be used as remedy. It is constructed by means of explicit discretization of the diffusion term and 
a stabilizing term which is added on both sides of the equation. On one side this stabilizing 
term is treated by an implicit scheme, on the other side it counterbalances a part of the diffusion 
term in the explicit part of the scheme. The choice of this supplementary term strongly influences 
the numerical stability. It is restricted a priori by the possibilities of the algorithm applied for 
inversion of the implicit operator and should take into account in some sense the major part 
of the diffusive term. This can be obtained for example by using a linearized expression of this 
term or other arguments based on the physical nature of the flow. 
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The above methodology applies in this form mainly to cases where the most restrictive stability 
condition arises from the diffusive term, as in low Reynolds number flows. In some cases of 
natural convection it leads even to unconditionally stable time schemes. On the other hand, in 
situations where the convective term determines the overall stability (CFL condition), the direct 
application of the time schemes presented below does not necessarily improve stability. In such 
a case, however, a semi-implicit treatment of the convection term in the same spirit as applied 
in this paper should be successful, especially in the presence of a strong basic flow, a situation 
that often appears in typical applications. 

A fully non-linear implicit algorithm, as developed for a spectral method by Gerhold9 and 
Fröhlich et al.10 can be of advantage, of course. The unconditional stability is, however, obtained 
with additional computational effort at each time cycle, so that it is of interest in particular 
when one cannot get rid of too restrictive critical time steps by other means. 

LOW MACH NUMBER EQUATIONS 
The equations for natural convection under the classical Boussinesq approximation read like 
(3), (4) with a supplementary volume force that linearly depends on temperature being determined 
by an additional transport-diffusion equation. Consequently, the above scheme (5), (6) is 
generally applied to this kind of flow (similarly, when considering other formulations such as 
vorticity-streamfunction, etc.). 

The set of equations that we will be concerned with in this paper are low Mach number (LM) 
equations that are of more general character than the Boussinesq equations. They have to be 
used for various problems of technical and theoretical interest, such as free and forced convection, 
crystal growth, isobaric combustion and others, since in these situations the hypotheses for the 
Boussinesq approximation do no longer hold. Recent developments in the cited fields justify the 
interest in devising efficient spectral solution algorithms, in particular for the study of stability 
problems where high accuracy is desirable (see Fröhlich and Peyret11 for the stability of a plane 
flame front). 

The LM equations are obtained when developing the complete Navier-Stokes equations in 
terms of γM2, M «1 being the characteristic Mach number of the flow, and γ the ratio of specific 
heats. Retaining lowest order terms gives in non-conservative form 

as indicated by Paolucci12 and Chenoweth and Paolucci13. In (8)—(12) we have supposed an 
ideal gas with constant specific heats, viscosity and heat conductivity, but these assumptions 
are not essential. Similar equations can be deduced if they do not hold, and the exposed techniques 
carry over immediately. The notation of the dimensionless variables is the following: ρ is the 
density, v the velocity, 0 the temperature and Pr the Prandtl number that fulfils here Pr= 1/Re 
since a reference velocity based on heat diffusion has been chosen. The gravitational force fg reads 
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where e=AT/2T* is the characteristic temperature difference in the flow field ΔT, non-
dimensionalized by two times the reference temperature T*, and Ra is the Rayleigh number. 
The underlying development of all dependent variables reads for the pressure: 

The superscript (0) has been suppressed in (8)-(13) for all quantities 
P0 = P(0)) and we denote p = p(1), which is the only quantity of first order in these equations. It 
plays the same role as the pressure in incompressible flows, (3)-(4). The pressure P0 = P(0) is 
constant in space and is determined by a supplementary scalar equation deduced from global 
conservation of mass. This equation reads: 

and is obtained by integration of the state equation and the fact that P0 is constant in space. It 
guarantees that the mass initially enclosed in the computational domain ΩA 
remains constant, without being affected by accumulation of temporal or spatial truncation errors. 

Instead of (8) we will occasionally use: 

derived from (8), (10) and (11), for its resemblance to (4). The fundamental difference, however, 
is the non-vanishing rhs in (16) so that the problem of compatibility between velocity boundary 
conditions and thermodynamic variables arises, discussed e.g. by Majda14. For a closed domain, 
the boundary conditions on the velocity (rigid walls, periodicity in x) lead to 

so that a solution to (16) only exists, if 

From a continuous point of view, (15) and (18) are equivalent. As with (15), (18) is obtained 
from (8), having multiplied by 0 and using (10). A numerical method, however, introduces 
discretization errors and it is important to take care that these cannot deteriorate the 
calculation15. 

Owing to the structure of the equations that is similar to the one of those of an incompressible 
fluid, it is natural to use a temporal discretization that permits to split up the calculation at 
each time level n +1 in three parts as in Fröhlich and Peyret15: (1) determination of θn+1 from 
the temperature equation by a direct scheme, (2) constant mass constraint in a closed domain 
giving state equation for ρ n + 1 , (3) solution of momentum and continuity equation to 
determine vn+1 and pn+1. In the present paper we will only deal with the third of these steps. 
It is the central part of the algorithm and, moreover, step (1) makes use of the same techniques 
as applied to the momentum equation in step (3) and has been described in the above reference. 
Consequently, from now on and ρ = ρ n + 1 are assumed to be 
known. 

After these general remarks on the temporal discretization, we start with some brief indications 
on the technique applied for spatial discretization in order to motivate the way in which the 
implicit part of the time scheme is constructed. Then, in the main part of this paper, three direct 
methods for the solution of the LM equations are presented. Their discussion permits to point 
out the main difficulties associated with the temporal discretization of this type of equation and 
to develop adequate strategies. Two of the algorithms make use of the velocity-pressure 
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formulation. The most promising is the third one based on a momentum-pressure formulation. 
This is supported by the numerical results obtained for the Rayleigh-Bénard problem. We finally 
make some remarks on extensions to 2D fully non-periodic and 3D problems where 
computational efficiency is a crucial point. 

RAYLEIGH-BÉNARD PROBLEM AND THE SPATIAL APPROXIMATION 
Although the presented methods apply to a large class of flows, the discussion and the numerical 
results reported later on in this paper concern the two-dimensional Rayleigh-Bénard problem 
of a horizontal fluid layer heated from below. The boundary conditions are 

The solution is supposed to be periodic in the horizontal x-direction with period length 2A (the 
computational domain ΩA is of aspect ratio A). The initial condition for a calculation with a 
given Rayleigh number is the hydrostatic solution, randomly perturbed, or the solution obtained 
for a different Rayleigh number. 

The iterative algorithm presented in Frölich and Peyret15 and briefly recalled in the following 
section has been applied to solve the LM equations (9)-(16) in the above geometry, and further 
results are to be found in Frölich et al.16. The spatial discretization is the same as in the above 
references, so that only some key points need to be recalled here: the present boundary conditions 
lead to an expansion of each dependent variable in a Fourier series with respect to x and 
Chebychev polynomials 

in the non-periodic y-direction. (As the latter are defined on the interval y∈[—1;1], we have 
introduced a scaling factor of 2 for the coordinates.) Spatially discrete equations are obtained 
using a Fourier-Galerkin/Chebychev-collocation method wherein the non-linear terms are 
evaluated by a pseudo-spectral technique2. The number of collocation points in x-direction is 
denoted NF. In y-direction, we use NC +1 Chebyshev Gauss-Lobatto collocation points that read 

for all quantities, except the pressure p. Note that for the present problem the pressure is not 
involved in the physical boundary conditions, unlike e.g. in free surface flows. Hence, it is 
convenient to define the pressure on the Chebyshev-Gauss points: 

Moreover, the use of such a staggered mesh avoids spurious modes for this quantity as e.g. in 
Malik et al.6. The conservation of momentum is imposed on yj and continuity on ηj. 
Consequently, the unknowns are the values of the Fourier coefficients at the Chebyshev 
collocation points. 

The derivatives in x-direction are efficiently carried out in Fourier space. Derivations in 
y-direction can be implemented in a similar manner using FFT-algorithms, but on vector 
computers the use of matrix multiplications is competitive and for relatively small numbers of 
modes even faster, as shown e.g. by Canuto et al.1, so that this latter is employed here. 

Obviously, expressions of type c ∂xxu, c(y)∂xxu etc. lead to uncoupling of modes in Fourier 
space which is not the case when c depends on x as in c(x,y)∂xxu, for instance. Furthermore, 
since in a term like c(y)dyyu or ∂yy(c(y)u) the discrete differentiation with respect to y is carried 
out by multiplication with a differentiation matrix, the coefficient c(y) can be accounted for by 
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simply modifying this matrix. This is of advantage especially when c does not depend on time, 
so that the modified differentiation matrix is calculated once and for all. Note that the uncoupling 
of different Fourier modes considerably reduces the complexity of the problem. It corresponds 
to the transition from a full matrix to a block diagonal matrix. 

DIRECT SCHEME BASED ON A VELOCITY-PRESSURE FORMULATION 

In this section we describe a direct algorithm for the solution of (9), (16). It is based on the 
scheme (5), (6) with some modifications due to the present equations. The density ρ throughout 
plays the role of a known coefficient, different at every time step. For the construction of the 
algorithm it is convenient to introduce a temporally constant state ρs destined to replace ρ in 
front of the time-derivative in (9). In the simplest case it may just be a constant, but together 
with Fourier space discretization in x we can easily set ρ5 = ρ5(y) and use for the case of natural 
convection the hydrostatic density distribution. As the following discussion will show, ρs should 
generally be chosen as close as possible to ρ and capture its characteristic variation. After 
multiplication of (9) by ρs/ρ the time-discretized version of (9) and (16) reads: 

where σ=3/2Δt. The pressure has to be discretized at least partly implicitly as the mass 
conservation constraint is imposed on the level n +1 which is a usual feature of 'incompressible' 
algorithms. The notation in (24) emphasizes the use of a stabilizing terms. In fact, we choose: 

so that the explicit contribution of the diffusion term in the rhs of (24) reads: 

with w = (v; u)t. Note that, following the remarks made in the previous section, terms with second 
order derivatives in y-direction induce the most restrictive critical time step for low velocities. 
The severe stability condition has its origin in the diminishing spatial scale of the Chebyshev 
polynomials in the vicinity of the boundaries at y= ± 1, which is reflected by a decrease of the 
distance between the collocation points proportional to N -2, see (2), (22), (23). The reason for 
the introduction of the factor ρs clearly appears in (27). First, if the density ρ is not too different 
from the hydrostatical distribution ρs, the effect of the diffusion term treated 
explicitly is weak with respect to the implicit term s. In particular from the present Dirichlet 
boundary conditions on 0 and the fact that p0 generally varies only little with respect to its 
initial value, we get that ρs/ρ ≈1 near y = ± 1. Consequently, the diffusion term is 
treated nearly fully implicitly in this region thus removing in most of the cases the related critical 
time step as experienced in Fröhlich17. The appearance of the mixed derivatives of the velocity 
is a particular feature of the LM equations with respect to constant density flow or Boussinesq 
approximation. Numerical experience shows that stabilizing with the second order derivatives 
is generally sufficient to allow explicit discretization of this part of the friction term. Its inclusion 
in the stabilizing term s would not be complicated, but the advantage of the expression (26) is 
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that u and v uncouple in s, which is thus represented by two (Nc+1) x {Nc+1) matrices instead 
of one 2(Nc+ l) x 2(Nc+ l) matrix for each Fourier mode. Note that with no-slip conditions 
on the velocity (as well as slip conditions) the mixed derivatives vanish on the boundaries so 
that they contribute to the friction term only above a certain distance. Furthermore, as will be 
shown later, the mixed derivatives can be included in the pressure gradient term in the case of 
constant viscosity and have thus to be taken into account when considering variable fluid 
properties. This choice of s is well adapted to diffusion dominated situations. In cases where the 
non-linear convective term overwelms diffusion the operator s should also contain whenever 
possible a contribution (vapp.∇)v with vapp being an approximation to v as suggested by Malik 
et al.6 for a channel flow problem. 

Note that in the forcing term (13) the hydrostatic density distribution can be substracted so 
that one actually considers a pressure p which represents the perturbation of the hydrostatic 
pressure. For the practical implementation of (24)-(25) a delta-formulation has been employed 
that uses vn+1 — vn and pn+1— pn as unknowns at each time step. It is often applied to reduce 
the influence of round off errors and introduces no significant modification here due to the 
linearity of the implicit part of the scheme. For the sake of conciseness this point will not be 
apparent in the sequel. 

Although focusing at present on the lhs of (24), (25), we would like to indicate that while 
calculating in (25) from θn+1 by (15), the use of (18) applied on the staggered Gauss points 
is recommended to determine This guarantees compatibility in the continuity equation 
(25) on a numerical level15. 

We now describe the procedure for solving (24), (25) at each time step using a symbolic 
notation in a spatially continuous sense, but we suppose that the corresponding discrete 
equivalents take into account the different types of collocation points and the boundary conditions 
as well. Defining the operator L by: 

the set of equations to be solved at each time step reads: 

where fv and g replace the rhs of (24) and (25), respectively. With the definition (26) for s, L 
is represented after spatial discretization by a set of matrices, one for each Fourier mode, which 
are constant in time and can therefore be inverted once and for all. An equation for the pressure 
alone can be deduced solving (29) for vn+1 and inserting into (30): 

once again corresponds to a set of 'one-dimensional' matrices in Fourier space. They are inverted 
at the beginning of the calculation and lead to the following direct algorithm for the determination 
of vn+1 and pn+l including only matrix products: 

For the inverse A-1 to exist, a supplementary condition is added by fixing the value of the 
pressure at one collocation point. 
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An important point related to the scheme (24), (25) is the choice of an initial state for the 
pressure. It is commonly known that an initial value problem for the Navier-Stokes equations 
for an incompressible fluid (and the present set of equations is of this type) is well posed without 
the initial pressure to be specified as to be found e.g. in Ladyzhenskaya18. When nevertheless 
using such a state, Heywood and Rannacher19 indicate that it has to be determined from the 
initial velocity by solving a Poisson equation with Neumann boundary conditions. However, the 
regularity of the solution at subsequent time steps is strongly dependent on the way the initial 
velocity is defined20. Due to these difficulties, numerical algorithms requiring an initial state for 
the pressure should be avoided. In the present case, however, this problem is satisfactorily solved 
by starting from a true solution of the equations, either the hydrostatic state, or the solution 
of a different Rayleigh number which guarantees the initial pressure to be appropriately chosen. 

When using this direct algorithm, it turns out that it is applicable only for very small 
perturbations of the static density distribution, more precisely if |1—ps/p| is smaller than about 
0.3. If this factor is larger, the above direct scheme is unconditionally unstable. 

We discuss this question of stability using the following Stokes problem as a model: 

with Fourier space discretization in both spatial directions. The scalar b here stands for the factor 
(1 —ps/p) and is assumed to be positive. Let be the Fourier coefficient of the function Φ(x,y) 
and It can be shown that the amplification matrix E with: 

has the eigenvalues 

with K=σ+k2+m2 for the wave numbers k and m in x- and y-direction, respectively. Note, 
that and are independent of σ=3/(2Δt), i.e. of the time step. A necessary condition for 
numerical stability is bounded spectral radius, i.e. for all eigenvalues of E. This condition 
is violated if b> 1/3, since in this case becomes greater than unity and leads to unconditional 
numerical instability of the time scheme, an observation that corresponds nicely to the executed 
numerical calculations, even if the Fourier-Chebyshev space discretization is different from the 
Fourier-Fourier discretization for the model problem (37), (38). Since obviously the eigenvalues 

and are directly related to the pressure terms in (37), one may try to obtain them from 
exclusively considering the pressure terms in the scheme. A simple calculation shows that this 
is indeed the case. Note that if 0<b<l /3 the above scheme is unconditionally stable. 

A Crank-Nicolson scheme for the pressure in the constant density or LM equations leads to 
time schemes similar to (37), (38) in that the pressure enters on the level n. For the above Stokes 
problem approximated by Fourier series, the Crank-Nicolson scheme is exempt of numerical 
instability. For a channel flow problem using Fourier-Chebyshev approximation Zang and 
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Hussaini21 report difficulties with such a scheme concerning the precision of the calculated 
pressure. They have been removed by implicit discretization of this quantity. Consequently, the 
use of a fully implicit scheme for the pressure is highly recommended, disregarding the additional 
problem of defining an initial value for this quantity. 

The stability limit encountered for the use of the direct scheme (24), (25) restricts its application 
considerably. In the case of natural convection, the regime of extremely low Rayleigh numbers 
or very small departures from the Boussinesq case (characterized by a small value of ε) may be 
treated with this algorithm. Such conditions, however, are often far from the ones of interest. 
For these cases, the time scheme can be modified discretizing the pressure by an implicit and 
no longer by a semi-implicit scheme. We thus obtain the iterative algorithm described in Fröhlich 
and Peyret15 which is briefly recalled here for completeness. The scheme reads: 

with s from (26). In the above way we deduce an equation for the pressure that reads: 

permitting to apply the algorithm (33)-(36) in a similar way. The pressure operator is now 
defined by: 

and contains the factor ps/p which inhibits the uncoupling of modes and furthermore varies 
in time. This forbids the explicit use of A*-1, and therefore in the step analogous to (34) 
the pressure is now calculated iteratively. The procedure applied in Fröhlich and Peyret15 

is based on preconditioned conjugate residual iterations, detailed in Canuto et al.1, using 
the spectral approximation of A as a preconditioner. Due to the fact that ps/p = 0(1) this 
operator si is close to si* and its use leads to very satisfactory convergence rates. Observe that 
in the present context, the time scheme is always chosen so that L can be inverted once and 
for all and applied with reasonable effort. Other temporal or spatial discretizations may impose 
an iterative solution of this equation by a true Uzawa algorithm. 

Finally, concerning other numerical solutions of the LM equations in velocity-pressure 
formulation, we note the contribution of Caruso et al.22 who have presented a finite element 
procedure based on Uzawa iterations for the solution of the steady state equations with a 
modified friction term and the method proposed by Le Quéré et al.23 based on a finite difference 
technique. 

A PSEUDO-UNSTEADY METHOD 
As discussed in the previous section, the presence of the factor ps/p in front of the pressure 
gradient in (41) requires the application of an iterative procedure. Recognizing that the 
origin of this factor is the time derivative p∂tv it is possible to avoid the need of an iterative 
procedure either by considering the derivative of the momentum ∂tpv as it will be described 
later, or by modifying this term. In fact, if only the steady state solution is of interest, the 
time-derivative in the equations just serves to construct an iterative procedure in order to reach 
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this steady state. Without altering the final solution, this term may therefore be modified in 
order to set up a different algorithm permitting to obtain the final solution with less computational 
effort24. The true physical transition from the initial condition to the steady solution, of course, 
is no longer followed. In the present case, the simplest way is to just replace p∂,v by ps∂tv or 
∂tv as in Peyret and Viviand25 and Ouazzani and Peyret26. The resulting pseudo-unsteady 
algorithm reads: 

with s given by (26) so that the part of the friction term discretized by the Adams-Bashforth 
scheme simply consists of the mixed derivatives. 

The method has been used by Fröhlich and Peyret11 for a study of isobaric combustion 
associated with a coordinate transform in y-direction to improve the numerical resolution of 
the flame. For the calculations reported in this reference, the use of the pseudo-unsteady method 
reduces the CPU time by a factor of about 4 with respect to the true unsteady iterative method. 
This concerns the complete set of equations wherein the calculation of temperature, species and 
density is kept unchanged. 

A DIRECT METHOD BASED ON A MOMENTUM-PRESSURE FORMULATION 
The pseudo-unsteady method just being described avoids iterations by modifying the physical 
equations that govern the transient solution. It is, however, possible to obtain the same feature 
while conserving the exact unsteady equations. This is achieved by using the conservative form 
of a momentum equation and equation (8) for the conservation of mass so that the dependent 
variables are the momentum m=pv and the pressure p (Haldenwang, personal communication). 
The factor ps/p in front of the pressure gradient now disappears, as p enters in the new variable. 
The hydrodynamical part of the LM equations then reads after temporal discretization: 

so that the algorithm (33)-(36) can be applied with vn+1 being replaced by mn+1 and removing 
in L from (28) the factor ps. The above scheme defines a true unsteady direct method for the 
hydrodynamical part of the LM equations that does not suffer either from semi-implicit pressure 
discretization and the related stability limit or from altering the physical equations. 

In what concerns similar methods, we note that for the steady state LM equations, Caruso 
et al.22 have developed a 2D finite element Uzawa algorithm based on a momentum-pressure 
formulation with a modified friction term and applied it to the calculation of free convection. 
Chenoweth and Paolucci13 have devised a finite difference method for natural convection in 
square cavities that also employs the momentum as unknown. Finally, for the study of the 
Darrieus-Landau instability in isobaric combustion, Denet27 has used the momentum as 
dependent variable but associated to an altered friction term instead of ∇2v. Moreover, 
the time derivatives in the temperature and species equation are modified in the same way as 
described in the previous section. The resulting equations are approximated with a Fourier/finite 
difference method. 

The success of all the time schemes presented so far depends on the appropriate choice of the 
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stabilizing term s. If this term is not sufficient to get rid of the diffusive time step limitation, it 
would perhaps be better to use an explicit method (s=0) for reasons of simplicity. As previously, 
the operator s has to be linear with at most a y-depending factor if one wants to avoid iterations. 
Numerical experiments conducted with (47), (48) show that the use of: 

similar to (26), does not stabilize the scheme in the same way as the iterative method based on 
(41), (42). The choice of 

however, was successful. This is comprehensible, since, as already mentioned above, ps/p ≈ 1 
near the boundaries, so that the friction term is treated in this region almost entirely by the 
second order Euler-backward scheme. 

Let us now make a remark on the use of the continuity equation (48). The boundary conditions 
for a closed domain impose similarly to (17) 

For the continuous equations, the integral of ∂tp over the computational domain vanishes also 
due to the verification of the continuity equation. Consequently, a solution to the discrete 
equations does only exist up to a precision characterized by the difference existing between the 
discrete integral on either side of the continuity equation. Since in a time marching procedure, 
the error introduced in this way may sum up and lead to a breakdown of the calculation, the 
algorithm has to be constructed so as to safely avoid this phenomenon. For the velocity-pressure 
methods this should be used as a condition to determine dtp0 in (25). 

In the following we discuss this point in detail for the direct momentum-pressure algorithm 
(47) and (48) and define for convenience 

appearing in the rhs of (48). Since the integral of R is influenced by truncation errors in space 
and time, we first concentrate on the time scheme assuming for the moment no discretization 
in space. Recall that the density at the level n +1 is determined from the equation of state (11) 
using θn+1 and given by (15). Consequently, at each time step the integral of p over the 
domain is equal to the total mass MA, so that the integral of R vanishes exactly. It is obvious, 
that this would not be the case, if was calculated differently. For example the determination 
of this quantity by the Adams-Bashforth extrapolation (7) would lead to an error O(Δf2) in the 
integral of R. 

Let us now consider the error introduced by the spatial discretization. Owing to the use of a 
staggered mesh of Gauss points to define the unknown pressure, the continuity equation is 
enforced on these points, whereas all the other equations are enforced on the Gauss-Lobatto 
points. With the spectral approximation the unknown temperature, velocity and density defined 
by their values at the Gauss-Lobatto points are represented in y-direction by polynomials of 
degree Nc. The projection from the Gauss-Lobatto to the Gauss points eliminates the highest 
order term in the Chebyshev expansion, since TNc(ηj)=0 due to (21) and (23). Consequently, 
integrating a dependent variable such as p with the help of the Nc+l Gauss-Lobatto points 
gives the correct integral of this function over the domain. Integrating with the Nc Gauss 
points, the highest Chebyshev mode is disregarded. 

It is now possible to show that the integral in (51) is (for the present geometry) not affected 
by the projection on the Gauss points, i.e. by the spatial discretization, if derivatives are evaluated 
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before projection (discrete differentiation and projection do not commute). The first part of the 
divergence term gives due to the periodicity in x of m1=pu. Because of the 
differentiation with respect to y, the second part of the divergence term is a polynomial in y of 
degree Nc—l, so that it's evaluation on the Gauss points does not remove the contribution 
from Consequently, the property (51) is true also on the spatially discrete level. On the 
other hand, integrating R over the domain gives different values when using the Gauss or the 
Gauss-Lobatto points, since p generally is a polynomial in y of degree Nc. However, when 
using the Gauss points for integration in (15), the integral of R on the staggered mesh vanishes. 
The total mass may now differ from MA by an amount corresponding to the spatial truncation 
error, but compatibility in the discrete system is always verified up to machine precision. 

We conclude this section by indicating a simplification that can be applied to all the presented 
methods but which has only been implemented for the momentum-pressure formulation and 
the pseudo-unsteady algorithm of the previous section. It is based on the particularity of the 
LM equation that the pressure p only appears in the momentum equation without thermodynamic 
relevance. Hence, it is possible to modify this pressure term by any expression in the form of a 
gradient as indicated by Denet27. For constant viscosity, where 

this may be used to suppress the mixed derivatives in the friction term by defining a modified 
pressure: 

so that the momentum equation (47) now reads: 

With the stabilizing term 

the explicit part of the friction term becomes simply 

Note that the introduction of the modified pressure defined in (54) is possible, since the 
considered physical problem does not include boundary conditions for the pressure. Moreover, 
the prescription of on the boundaries for algorithmical reasons has been avoided by using the 
staggered mesh, so that the implementation is straightforward. Concerning the stability of the 
resulting algorithm, we note that the explicit term (57) behaves like the one in (27) with the 
mixed derivatives having disappeared here. As supported by the numerical results reported in 
the following section, the critical time step remains unchanged. An advantage of the formulation 
is the simplification of the equations to be solved (in the case of constant viscosity) which leads 
to a reduced number of operations. With this option coded for the momentum-pressure 
algorithm, we observed a gain of 7% in the overall CPU time when solving the complete 
Rayleigh-Bénard problem. It can finally be remarked that such a modification leads to a fully 
implicit treatment of the diffusion term when being applied to the pseudo-unsteady method. 
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NUMERICAL PROPERTIES OF THE ALGORITHMS 
Having presented different schemes for the solution of the hydrodynamical part of the LM 
equations we shall now discuss some numerical properties related to these algorithms. All of 
them have been applied to the Rayleigh-Bénard problem defined earlier which serves as test 
case. We concentrate here on the numerical aspect and do not discuss the solution from a 
physical point of view. The reader is referred to Fröhlich28 and Fröhlich et al.16 where this is 
done in detail. It is, however, convenient to give an impression of a typical calculation for this 
problem. To this aim we begin with the temporal evolution of a sample calculation making 
some remarks on computation time. It should be noticed that the eventual physical solution of 
the problem is stationary up to high Rayleigh numbers. However, the analysis of the properties 
of the algorithms during the transient phase gives sufficient information on their behaviour for 
fully unsteady calculations. In the second part of this section we investigate the numerical stability 
of the different methods before treating the pseudo-unsteady method in a following part. Finally, 
some numerical experiences on the discrete compatibility condition for the momentum-pressure 
formulation are reported. 

The calculations that are reported have been carried out in the following way. The aspect 
ratio of the domain is set to .4 = 2.017 which approximatively corresponds to the critical 
wavelength of the Rayleigh-Bénard instability in the Boussinesq case, Pr=0.71 and y= 1.4 are 
values corresponding to air, and ε = ΔT/(2T*) in (13) and (20) is generally chosen equal to 
e=0.5. This value represents a large characteristic temperature difference related to a strong 
departure from the Boussinesq approximation. Note that by definition 0 ≤ ε ≤ 1 when choosing 
the mean temperature as reference. As the critical wavelength varies only slightly with ε, differing 
in the present case less than 1% from the Boussinesq value16, the choice of the above aspect 
ratio is justified. The initial condition is the static state with a random perturbation in the 
temperature field of amplitude 10~5. Then, for a given Rayleigh number, the different schemes 
described in the previous sections are applied to advance the solution in time (the first step 
being calculated by a first order scheme). The calculation is continued up to the steady state, 
characterized by on the collocation points. As indicated, the 
temperature equation is always solved by the same semi-implicit scheme, similar to (24). 

Computation time 
Let us first discuss the computation time for the direct momentum-pressure algorithm in 

comparison to the iterative velocity-pressure method. The evolution of the Nusselt number 
(ratio between the total heat flux and the heat flux of the purely conductive state) in Figure 1 
has been obtained with Ra=6000, Δt=5 x 10 -3, and NF=32, N c=24. It is characterized by a 
first phase of exponential growth of the initial perturbation leading to a transient phase with 
relatively high temporal derivatives which is followed by the final stabilization of the steady 
solution. In the present case the integration in time has been pursued sufficiently far so that all 
time-derivatives have decreased to a level corresponding to the high spatial accuracy. 

In Figure 1 the solution has first been obtained with the iterative algorithm (41), (42). The 
corresponding curve of the cumulative CPU time (in seconds, on CRAY 2) exhibits constant 
slope when temporal changes are very small due to the fact that only one or two iterations are 
executed at each time step. In the transient phase, the number of internal iterations increases 
so that the method becomes more time consuming. Note that this effect will be amplified for 
larger time steps and stronger perturbations of the density with respect to the reference state 
(here the hydrostatic state). The computation time of the direct method (47) and (48) is also 
reported in Figure 1. It exhibits a constant slope which is smaller than the limiting slope of the 
iterative method. This is due to the higher complexity of the iterative technique (necessity of 
supplementary calculations: residual, ...) and the difficulty of adjusting the convergence 
parameters for the inner iterations. Note that the time saving in the transient phase is important. 
In the present example, this latter, however, constitutes only a small part of the whole run 
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Figure I Temporal evolution for the calculation of the Rayleigh-Bénard flow field for Ra = 6000, ε=0.5, 
NF = 32, Nc = 24, Δt = 5 x10 - 3 . The initial condition is the hydrostatic state with the temperature randomly 
perturbed by an amplitude of 10 -5 . (a) Evolution of the Nusselt number on the bottom of the domain. The steady 
state solution is characterized by the streamlines based on the momentum, (b) Cumulative CPU time (CRAY 2) 
versus physical time for the iterative v-p method (1) and the direct m-p method (2). The calculated transient 

solution is the same in both cases 

(roughly 1/10), so that a factor of about 2 is obtained in the end. For true unsteady solutions 
as they appear, e.g. in oscillatory convection, the acceleration will lead to a factor much higher 
than this, especially when many iterations would be necessary due to the use of relatively large 
time steps or strong density perturbations. Apart from considerations of CPU time, a direct 
method is often advocated because of greater simplicity and the fact that it avoids the specification 
and optimization of iteration parameters which is often a delicate task. Let us finally state that 
the other direct methods have been tested under the same conditions (see below). They need 
similar computation time as the momentum pressure method in Figure 1. 

Numerical stability of the truly unsteady methods 
We report first some results concerning the stability of the direct velocity-pressure algorithm 

(24) and (25). If the density ρ deviates too much from its reference state ρs, it is subject 
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to unconditional numerical instability due to the partly explicit temporal discretization of 
the pressure as indicated. This has been investigated above for a simplified model, and we 
report here in Table 1 the corresponding results for the complete Rayleigh-Bénard flow. 

We continue by considering the choice of the stabilizing term s in the momentum-pressure 
algorithm (47), (48) and compare its behaviour to the iterative velocity-pressure method (41), 
(42). For NF = 16 and Nc= 12 we obtained with Ra=2000 the estimations of the critical time 
step that are reported in Table 2. Note that this Rayleigh number is only very slightly above 
the critical value which is for this case16 Racrit= 1711 so that the velocity remains very low as 
indicated in Table 1. 

The results show (last line of Table 2) that in this case an appropriate choice of s can suppress 
the time step limit generated by the diffusive term, leading here to an unconditionally stable 
algorithm. Indeed, if the time step is enlarged further, e.g. to At = 1 which is beyond any physically 
meaningful value, we observe that the numerical solution exhibits temporal oscillations due to 
the truncation error in time but does not diverge. If s is not chosen in an optimal way, this may 
lead to a less stable scheme as indicated in the third line of this Table. Nevertheless, a gain of 
roughly a factor 5 in the critical time step is to be observed when comparing to the explicit 
discretization of the diffusion term (s=0). With the present spatial resolution {NF= 16, Nc= 12), 
the critical time step is about 10 -3 for this latter case. The iterative v-p scheme with s from (26) 
also leads to an unconditionally stable scheme which is in accordance with the discussion in the 
corresponding section. 

Table 3 presents results similar to those of Table 2, except that the Rayleigh number has been 
set to a higher value (Ra = 6000) so that the convective flow becomes stronger, illustrated by 
the velocity values reported in Table 1. It can be observed that with the applied spatial resolution 
the explicit discretization of the diffusion term induces a limiting time step of about 5 x 10 -5, 
whereas one encounters only the restriction due to the convective term when chosing an 

Table 1 Stability of the direct velocity-pressure method with NF = 32, Nc = 24. In the last two lines the method is 
unstable and in this case the values for the velocity and the density factor have been obtained with a different method 

(momentum-pressure) 

Ra ε |v|max At 

2000 
6000 
6000 
6000 
6000 
6000 
6000 

0.5 
0.01 
0.1 
0.2 
0.3 
0.4 
0.5 

3.93 
10.28 
10.38 
10.52 
10.70 
10.90 
11.70 

0.232 
0.00836 
0.0858 
0.177 
0.275 
0.384 
0.508 

5 x l 0 − 2 

l x l 0 − 2 

5 x l 0 − 3 

5 x l 0 − 3 

5 x l 0 − 3 

unstablefor2 x 10−3 

unstable for 5 x l 0 − 6 

Table 2 Stability of the calculation for different choices 
of the stabilizing term s with Nr = l6, NC=12, ε = 0.5, 
and Ra = 2000, in parentheses the time step for divergence. 
The first line concerns the iterative algorithm (41), (42), 

the remainder is related to (47), (48) 

Method 

v-p iterative 
m-p 
m-p 
m-p 

s(m) 

- P r ∇ 2 v 
0 
- P r ∇ 2 m 
-Pr∇2((1/p sm) 

Δ t ' s t a b l e 

0.1 
1 x 1 0 - 3 ( 2 x 1 0 - 3 ) 
5 x 1 0 - 3 ( 1 x 1 0 - 2 ) 
0.1 

Table 3 Stability of the calculation for different choices 
of the stabilizing term s with Nr = 32, Nc=24, ε=0.5, 
and Ra—6000, in parentheses the time step for divergence. 
The first line concerns the iterative algorithm (24) and 
(25), the remainder is related to (47) and (48) and for the 

last line the simplified friction term has been used 

Method 

v-p iterative 
m-p 
m-p 
m-p 
m-p 

s(m) 

-Pr∇2v 
0 
- P r ∇ 2 m 
-Pr∇2(1/psm) 
-Pr∇2(l/psm) 

Δfstable 

1 x l 0 - 3 ( 2 x l 0 - 3 ) 
5 x l 0 - 3 ( l x l 0 - 4 ) 
2 x 10 - 4 (4 x 10 - 4 ) 
8x l 0 - 3 ( l x l 0 - 2 ) 
8 x l 0 - 3 ( 1 x l 0 - 2 ) 



210 J. FRÖHLICH AND R. PEYRET 

Table 4 Stability of the pseudo-unsteady method with 
«=0.5 and NF = 16, Nc= 12 in the first line and NF=32, 

N c = 2 4 in the second line 

Ra 

2000 
6000 

s(m) 

- P r ∇ 2 v 
-P r∇ 2 v 

Δtstable 

0.1 
5 x l0 - 3(8 x l0 - 3) 

appropriate expression for s. We also used the simplified friction term that avoids the mixed 
derivatives without modifying the physical solution as discussed in the previous section. The 
corresponding result in the last line of Table 3 shows that this modification does not improve 
the numerical stability, at least in this case. 

The pseudo-unsteady method 
The pseudo-unsteady method has been implemented with the modification of the pressure so 

that the treatment of the diffusion term is fully implicit. Table 4 gives values of the critical time 
step that is due to the non-linear convective term here. The Table shows that the stability 
is similar to the one experienced with the iterative v-p and the m-p (or m-p) method 
using the correct stabilizing term. Incidentally, this proves that with the above semi-implicit 
discretization the diffusive time step limitation has been fully eliminated, indeed. It is important 
to observe that the physical time needed to obtain the steady state is roughly the same as the 
one corresponding to the truly unsteady methods. Only the transient phase is somewhat different 
as to be seen on Figure 2. Hence, the number of time steps to be executed is similar. A slight 
decrease of the operation count in each time step leads to a small gain in the overall computation 
time (less than 10% in the present case). 
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Numerical compatibility for the momentum-pressure formulation 
In order to investigate the importance of the spatial truncation error for the discrete 

compatibility, we repeated the calculation with the direct momentum-pressure method using 
very low spatial resolution, NF= 12, N c = 10, which leads to a relatively high spatial truncation 
error of about 10~4 for the variables of order unity. In a first case, the integral in (15) is calculated 
on the Gauss-Lobatto points (22) evaluating at each time step the integral of the rhs in (31) 
for control. Its maximum absolute value reaches 7 x 10~4 during the transient phase and decreases 
below 10 - 1 0 in the final steady state (recall that the algorithms are implemented in a delta 
formulation for all variables). The solution does not change more than 10 -8 when doubling the 
calculated laps of time, thus showing that no accumulation of error occurs in the steady state 
of this case. The error during the transient phase may, however, be trouble-causing in other 
applications, in particular for unsteady solutions. We therefore executed a second run evaluating 
now with (15) applied on the Gauss points (23). The resulting integral of the rhs in (31) 
remained below 10 -10 during the whole run. The final steady state solution was the same when 
taking into account the relatively coarse spatial resolution. This last method is to be preferred 
as it safely avoids the proliferation of round off errors, in particular for unsteady calculations. 
It should be indicated that large truncation errors are realistic when dealing with very stiff 
problems such as combustion phenomena, for example. When introducing a supplementary non­
linear coordinate transformation in y-direction to improve the spatial resolution as in Fröhlich 
and Peyret11, care has to be taken due to the fact that transformation and projection on a 
staggered mesh do not commute. It should, however, be stressed that the main point to preserve 
high accuracy is the calculation of based on an unchanged reference quatity, here MA. 

CONCLUSIONS 
From the present study of various spectral algorithms for the solution of the low Mach number 
equations, it can be concluded that the most efficient method is the direct method based on the 
following points: (1) momentum-pressure formulation (47), (48); (2) stabilizing term s from (50); 
(3) modified pressure following (54); (4) p0 calculated by conservation of the total mass (15). 
This leads to an algorithm for the solution of the truly unsteady equations with good numerical 
stability, requiring only matrix products at each time step. 

A first extension of the numerical schemes presented above is to take into account variable 
fluid properties such as temperature dependent viscosity µ and heat conductivity ).. We have 
experienced this for the present set up with the iterative velocity-pressure system (24)-(25), 
replacing x from (2) by τµl=µτ, where µ obeys the Sutherland law28. The behaviour of the scheme 
is essentially the same as described above provided the stabilizing term s takes into account the 
variation of the viscosity through a factor µs(y) (being here the viscosity in the hydrostatic state) 
similarly to ps(y) (see also Malik et al.6). 

In a general way, the term s has to be adapted to the problem under consideration. It should 
lead to an implicit part of the scheme easy to invert inducing at the same time sufficient numerical 
stability. The choice of s is strongly related to the choice of ps. In the present case of the 
Rayleigh-Bénard problem the hydrostatic solution furnishes a suitable expression, but for other 
situations its determination is perhaps less immediate. It can issue from physical considerations 
but may also be the result of some averaging procedure done once before starting the temporal 
evolution or periodically during the time integration. 

We now make some remarks concerning the construction of schemes for different problems 
by the choice of s indicating which kind of coefficients are supported in each case. First, the 
introduction of a coordinate transform in the non-periodic direction is straightforward if the 
transformation does not depend on x11. If it is variable in this latter direction, it leads to a 
variable coefficient that can be approximated by its mean value with respect to x. 

For two-dimensional geometry without periodicity, the development of the dependent variables 
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in double Chebyshev series complicates the solution procedure. The diagonalization technique 
commonly used in spectral methods can be employed if the stabilizing term s is such that the 
operator L is of the form: 

If c = const, L can be diagonalized once and for all29,30 and if c ≠ const., the diagonalization 
is performed for the operator in square brackets as done by Orszag and Kells31. 

A second way to conserve direct inversion of L is to introduce an approximate factorization 
technique (generalized ADI), Peyret and Taylor31, based on: 

This leads to one-dimensional problems in each spatial direction with the corresponding operators 
being inverted once and for all. 

A third technique for direct solution is often overlooked, when dealing with relatively few 
degrees of freedom, say 20 x 20. In former times it has been shocking to think of a direct inversion 
of the 400 x 400 matrix resulting from spatial discretization. With the progress in computer 
technology (vectorial and parallel processing) the use of direct inversion of such a matrix has 
become possible, provided it can be done once and for all. It leads to a matrix product to be 
performed at each time step with reasonable computational effort. This takes away any restriction 
on the coefficients that appear in the implicit part of the algorithm, except that they have to be 
constant in time. 

In what concerns three-dimensional geometries, the above remarks for the two-dimensional 
case carry over (except direct inversion of the full 3-D operator will generally not be reasonable), 
in particular when dealing with cylindrical geometries with a Fourier-Chebyshev-Chebyshev 
development. In this case, the time scheme has to be chosen so that different Fourier modes 
uncouple, thus reducing the problem to a series of two-dimensional problems. 

In the present paper we focused on direct methods. Without entering in the controversy on 
iterative or direct methods, it is our opinion that for time marching procedures one should first 
try to construct a direct algorithm in view of efficiency and practical reasons. If it turns out to 
exhibit too restrictive numerical stability criterion, an iterative procedure can still be added. In 
the present case of moderate non-linearities, in particular related to higher order derivatives, 
the present schemes are based on the consideration of a linear term which approximates 
sufficiently well the non-linear expression. With an iterative procedure, such a restriction does 
not appear. An example has been treated in Fröhlich et al.16, where the stabilizing term s is 
non-linear as it contains diffusive and convective terms. Note that the recourse to preconditioning 
based on finite difference methods might be advantageous in highly non-linear problems. 

Let us finally state that the presented methodology can also be applied to a large class of 
problems. For example, as already indicated, the equations that govern low speed combustion 
or non-homogeneous flows of miscible fluids with a large difference in molecular weight are 
nearly the same as the LM equations and can be solved in the same manner. 
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